Deep Generative Models, and Data Augmentation, Labelling, and Imperfections

Synopsis
This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021, and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic.DG4MICCAI 2021 accepted 12 papers from the 17 submissions received. The workshop focusses on recent algorithmic developments, new results, and promising future directions in Deep Generative Models. Deep generative models such as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community.For DALI 2021, 15 papers from 32 submissions were accepted for publication. They focus on rigorous study of medical data related to machine learning systems.
- Hakimiliki:
- 2021 Springer Nature Switzerland AG
Book Details
- Book Quality:
- ISBN-13:
- 9783030882105
- Publisher:
- Springer International Publishing
- Date of Addition:
- 2021-09-30T04:35:46Z
- Lugha:
- English
- Kategoria:
- Computers and Internet, Nonfiction,
- Usage Restrictions:
- This is a copyrighted book.
Choosing a Book Format
EPUB is the standard publishing format used by many e-book readers including iBooks, Easy Reader, VoiceDream Reader, etc. This is the most popular and widely used format.
DAISY format is used by GoRead, Read2Go and most Kurzweil devices.
Audio (MP3) format is used by audio only devices, such as iPod.
Braille format is used by Braille output devices.
DAISY Audio format works on DAISY compatible players such as Victor Reader Stream.
Accessible Word format can be unzipped and opened in any tool that supports .docx files.