Advanced Analytics and Learning on Temporal Data

Synopsis
This book constitutes the refereed proceedings of the 4th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2019, held in Ghent, Belgium, in September 2020.
The 15 full papers presented in this book were carefully reviewed and selected from 29 submissions. The selected papers are devoted to topics such as Temporal Data Clustering; Classification of Univariate and Multivariate Time Series; Early Classification of Temporal Data; Deep Learning and Learning Representations for Temporal Data; Modeling Temporal Dependencies; Advanced Forecasting and Prediction Models; Space-Temporal Statistical Analysis; Functional Data Analysis Methods; Temporal Data Streams; Interpretable Time-Series Analysis Methods; Dimensionality Reduction, Sparsity, Algorithmic Complexity and Big Data Challenge; and Bio-Informatics, Medical, Energy Consumption, Temporal Data.
- Copyright:
- 2020 Springer
Book Details
- Book Quality:
- ISBN-13:
- 9783030657420
- Publisher:
- Springer International Publishing
- Date of Addition:
- 2020-12-17T17:54:13Z
- Language:
- English
- Categories:
- Computers and Internet, Education, Nonfiction, Technology,
- Usage Restrictions:
- This is a copyrighted book.
Choosing a Book Format
EPUB is the standard publishing format used by many e-book readers including iBooks, Easy Reader, VoiceDream Reader, etc. This is the most popular and widely used format.
DAISY format is used by GoRead, Read2Go and most Kurzweil devices.
Audio (MP3) format is used by audio only devices, such as iPod.
Braille format is used by Braille output devices.
DAISY Audio format works on DAISY compatible players such as Victor Reader Stream.
Accessible Word format can be unzipped and opened in any tool that supports .docx files.